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BindsNET is built on top of the PyTorch deep learning platform. It is used for the simulation of spiking neural
networks (SNNs) and is geared towards machine learning and reinforcement learning.

BindsNET takes advantage of the torch.Tensor object to build spiking neurons and connections between them,
and simulate them on CPUs or GPUs (for strong acceleration / parallelization) without any extra work. Recently,
torchvision.datasets has been integrated into the library to allow the use of popular vision datasets in training
SNNs for computer vision tasks. Neural network functionality contained in torch.nn.functional module is
used to implement more complex connections between populations of spiking neurons.

Spiking neural networks are sometimes referred to as the third generation of neural networks. Rather than the simple
linear layers and nonlinear activation functions of deep learning neural networks, SNNs are composed of neural units
which more accurately capture properties of their biological counterparts. An important difference between spiking
neurons and the artificial neurons of deep learning are the former’s integration of input in time; they are naturally
short-term memory devices by their maintenance of a (possibly decaying) membrane voltage. As a result, some have
argued that SNNs are particularly well-suited to model time-varying data.

Neurons are connected together with directed edges (synapses) which are (in general) plastic. Synapses
may have their own dynamics as well, which may or may not depend on pre- and post-synaptic
neural activity https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3395004/ or other biological signals
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4717313/. The modification of synaptic strengths is thought to be an
important mechanism by which organisms learn. Accordingly, BindsNET provides a module (bindsnet.learning)
which contains functions used for the updating of synapse weights.

At its core, BindsNET provides software objects and methods which support the simulation of groups
of different types of neurons (bindsnet.network.nodes), as well as different types of connections between
them (bindsnet.network.topology). These may be arbitrarily combined together under a single bind-
snet.network.Network object, which is responsible for the coordination of the simulation logic of all underlying
components. On creation of a network, the user can specify a simulation timestep constant, 𝑑𝑡, which determines
the granularity of the simulation. Choosing this parameter induces a trade-off between simulation speed and nu-
merical precision: large values result in fast simulation, but poor simulation accuracy, and vice versa. Monitors
(bindsnet.network.monitors) are available for recording state variables from arbitrary network components (e.g., the
voltage 𝑣 of a group of neurons).

The development of BindsNET is supported by the Defense Advanced Research Project Agency Grant DARPA/MTO
HR0011-16-l-0006.
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CHAPTER 1

Installation

1.1 Pip install

Issue:

pip install -U bindsnet

1.2 Installing from source

On *nix systems, issue one of the following in a shell:

git clone https://github.com/Hananel-Hazan/bindsnet.git # HTTPS
git clone git@github.com:Hananel-Hazan/bindsnet.git # SSH

Change directory into bindsnet and issue one of the following:

pip install . # Typical install
pip install -e . # Editable mode (package code can be edited without reinstall)

This will install bindsnet and all its dependencies.

1.3 Running the tests

If BindsNET is installed from source, install pytest and issue the following from BindsNET’s installation directory:

python -m pytest test

3
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CHAPTER 2

Quickstart

Check out some example use cases for BindsNET in the examples/ folder (link). For example, changing directory
to [bindsnet-root]/examples/mnist and running the following will result in a near-replication of the architecture of
Diehl & Cook 2015:

python eth_mnist.py [options]

The token [options] should be replaced with any command-line arguments you’d like to use to modify the behavior
of the program.
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CHAPTER 3

BindsNET User Manual

Welcome to BindsNET’s user manual! To get started, click on one of the links below.

3.1 Part I: Creating and Adding Network Components

3.1.1 Creating a Network

The bindsnet.network.Network object is BindsNET’s main offering. It is responsible for the coordination of
simulation of all its constituent components: neurons, synapses, learning rules, etc. To create one:

from bindsnet.network import Network

network = Network()

The bindsnet.network.Network object accepts optional keyword arguments dt, batch_size, learning,
and reward_fn.

The dt argument specifies the simulation time step, which determines what temporal granularity, in milliseconds,
simulations are solved at. All simulation is done with the Euler method for the sake of computational simplicity. If
instability is encountered in your simulation, use a smaller dt to resolve numerical instability.

The batch_size argument specifies the expected minibatch size of the input data. However, since BindsNET
supports dynamics minibatch size, this argument can safely be ignored. It is used to initialize stateful neuronal and
synaptic variables, and may provide a small speedup if specified beforehand.

The learning argument acts to enable or disable updates to adaptive parameters of network components; e.g.,
synapse weights or adaptive voltage thresholds. See ‘Using Learning Rules‘_ for more details.

The reward_fn argument takes in class that specifies how a scalar reward signal will be computed and fed to the
network and its components. Typically, the output of this callable class will be used in certain “reward-modulated”, or
“three-factor” learning rules. See ‘Using Learning Rules‘_ for more details.

7
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3.1.2 Adding Network Components

BindsNET supports three categories of network component: layers of neurons (nodes), connections between them
(bindsnet.network.topology), and monitors for recording the evolution of state variables (bindsnet.
network.monitors).

Note: Names of components in a network are arbitrary, and need only be unique within their component group
(layers, connections, and monitors) in order to address them uniquely. We encourage our users to develop
their own naming conventions, using whatever works best for them.

Creating and adding layers

To create a layer (or population) of nodes (in this case, leaky integrate-and-fire (LIF) neurons:

from bindsnet.network.nodes import LIFNodes

# Create a layer of 100 LIF neurons with shape (10, 10).
layer = LIFNodes(n=100, shape=(10, 10))

Each bindsnet.network.nodes object has many keyword arguments, but one of either n (the number of nodes
in the layer, or shape (the arrangement of the layer, from which the number of nodes can be computed) is required.
Other arguments for certain nodes objects include thresh (scalar or tensor giving voltage threshold(s) for the layer),
rest (scalar or tensor giving resting voltage(s) for the layer), traces (whether to keep track of “spike traces” for
each neuron in the layer), and tc_decay (scalar or tensor giving time constant(s) of the layer’s neurons’ voltage
decay).

To add a layer to the network, use the add_layer function, and give it a name (a string) to call it by:

network.add_layer(
layer=layer, name="LIF population"

)

Such layers are kept in the dictionary attribute network.layers, and can be accessed by the user; e.g., by
network.layers['LIF population'].

Other layer types include bindsnet.network.nodes.Input (for user-specified input spikes), bindsnet.
network.nodes.McCullochPitts (the McCulloch-Pitts neuron model), bindsnet.network.
nodes.AdaptiveLIFNodes (LIF neurons with adaptive thresholds), and bindsnet.network.nodes.
IzhikevichNodes (the Izhikevich neuron model). Any number of layers can be added to the network.

Custom nodes objects can be implemented by sub-classing bindsnet.network.nodes.Nodes, an ab-
stract class with common logic for neuron simulation. The functions forward(self, x: torch.
Tensor) (computes effects of input data on neuron population; e.g., voltage changes, spike occur-
rences, etc.), reset_state_variables(self) (resets neuron state variables to default values), and
_compute_decays(self) must be implemented, as they are included as abstract functions of bindsnet.
network.nodes.Nodes.

Creating and adding connections

Connections can be added between different populations of neurons (a projection), or from a population back to itself
(a recurrent connection). To create an all-to-all connection:

8 Chapter 3. BindsNET User Manual
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from bindsnet.network.nodes import Input, LIFNodes
from bindsnet.network.topology import Connection

# Create two populations of neurons, one to act as the "source"
# population, and the other, the "target population".
source_layer = Input(n=100)
target_layer = LIFNodes(n=1000)

# Connect the two layers.
connection = Connection(

source=source_layer, target=target_layer
)

Like nodes, each connection object has many keyword arguments, but both source and target are required. These
must be objects that subclass bindsnet.network.nodes.Nodes. Other arguments include w and b (weight and bias
tensors for the connection), wmin and wmax (minimum and maximum allowable weight values), update_rule
(bindsnet.learning.LearningRule; used for updating connection weights based on pre- and post-synaptic
neuron activity and / or global neuromodulatory signals), and norm (a floating point value to normalize weights by).

To add a connection to the network, use the add_connection function, and pass the names given to source and
target populations as source and target arguments. Make sure that the source and target neurons are added to the
network as well:

network.add_layer(
layer=source_layer, name="A"

)
network.add_layer(

layer=target_layer, name="B"
)
network.add_connection(

connection=connection, source="A", target="B"
)

Connections are kept in the dictionary attribute network.connections, and can be accessed by the user; e.g.,
by network.connections['A', 'B']. The layers must be added to the network with matching names (re-
spectively, A and B) in order for the connection to work properly. There are no restrictions on the directionality of
connections; layer “A” may connect to layer “B”, and “B” back to “A”, or “A” may connect directly back to itself.

Custom connection objects can be implemented by sub-classing bindsnet.network.topology.
AbstractConnection, an abstract class with common logic for computing synapse outputs and updates.
This includes functions compute (for computing input to downstream layer as a function of spikes and connection
weights), update (for updating connection weights based on pre-, post-synaptic activity and possibly other signals;
e.g., reward prediction error), normalize (for ensuring weights incident to post-synaptic neurons sum to a
pre-specified value), and reset_state_variables (for re-initializing stateful variables for the start of a new
simulation).

Specifying monitors

bindsnet.network.monitors.AbstractMonitor objects can be used to record tensor-valued variables
over the course of simulation in certain network components. To create a monitor to monitor a single component:

from bindsnet.network import Network
from bindsnet.network.nodes import Input, LIFNodes
from bindsnet.network.topology import Connection
from bindsnet.network.monitors import Monitor

(continues on next page)

3.1. Part I: Creating and Adding Network Components 9
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(continued from previous page)

network = Network()

source_layer = Input(n=100)
target_layer = LIFNodes(n=1000)

connection = Connection(
source=source_layer, target=target_layer

)

# Create a monitor.
monitor = Monitor(

obj=target_layer,
state_vars=("s", "v"), # Record spikes and voltages.
time=500, # Length of simulation (if known ahead of time).

)

The user must specify a Nodes or AbstractConnection object from which to record, attributes of that object
to record (state_vars), and, optionally, how many time steps the simulation(s) will last, in order to save time by
pre-allocating memory.

To add a monitor to the network (thereby enabling monitoring), use the add_monitor function of the bindsnet.
network.Network class:

network.add_layer(
layer=source_layer, name="A"

)
network.add_layer(

layer=target_layer, name="B"
)
network.add_connection(

connection=connection, source="A", target="B"
)
network.add_monitor(monitor=monitor, name="B")

The name given to the monitor is not important. It is simply used by the user to select from the monitor objects
controlled by a Network instance.

One can get the contents of a monitor by calling network.monitors[<name>].get(<state_var>), where
<state_var> is a member of the iterable passed in for the state_vars argument. This returns a tensor of shape
(time, n_1, ..., n_k), where (n_1, ..., n_k) is the shape of the recorded state variable.

The bindsnet.network.monitors.NetworkMonitor is used to record from many network components at
once. To create one:

from bindsnet.network.monitors import NetworkMonitor

network_monitor = NetworkMonitor(
network: Network,
layers: Optional[Iterable[str]],
connections: Optional[Iterable[Tuple[str, str]]],
state_vars: Optional[Iterable[str]],
time: Optional[int],

)

The user must specify the network to record from, an iterable of names of layers (entries in network.layers), an
iterable of 2-tuples referring to connections (entries in network.connections), an iterable of tensor-valued state

10 Chapter 3. BindsNET User Manual
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variables to record during simulation (state_vars), and, optionally, how many time steps the simulation(s) will
last, in order to save time by pre-allocating memory.

Similarly, one can get the contents of a network monitor by calling network.monitors[<name>].get(). Note
this function takes no arguments; it returns a dictionary mapping network components to a sub-dictionary mapping
state variables to their tensor-valued recording.

3.1.3 Running Simulations

After building up a Network object, the next step is to run a simulation. Here, the function Network.run comes
into play. It takes arguments inputs (a dictionary mapping names of layers subclassing AbstractInput to input
data of shape [time, batch_size, *input_shape], where input_shape is the shape of the neuron pop-
ulation to which the data is passed), time (the number of simulation timesteps, generally thought of as milliseconds),
and a number of keyword arguments, including clamp (and unclamp), used to force neurons to spike (or not spike)
at any given time step, reward, for supplying to reward-modulated learning rules, and masks, a dictionary mapping
connections to boolean tensors specifying which synapses weights to clamp to zero.

Building on the previous parts of this guide, we present a simple end-to-end example of simulating a two-layer, input-
output spiking neural network.

import torch
import matplotlib.pyplot as plt
from bindsnet.network import Network
from bindsnet.network.nodes import Input, LIFNodes
from bindsnet.network.topology import Connection
from bindsnet.network.monitors import Monitor
from bindsnet.analysis.plotting import plot_spikes, plot_voltages

# Simulation time.
time = 500

# Create the network.
network = Network()

# Create and add input, output layers.
source_layer = Input(n=100)
target_layer = LIFNodes(n=1000)

network.add_layer(
layer=source_layer, name="A"

)
network.add_layer(

layer=target_layer, name="B"
)

# Create connection between input and output layers.
forward_connection = Connection(

source=source_layer,
target=target_layer,
w=0.05 + 0.1 * torch.randn(source_layer.n, target_layer.n), # Normal(0.05, 0.01)

→˓weights.
)

network.add_connection(
connection=forward_connection, source="A", target="B"

)

(continues on next page)
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(continued from previous page)

# Create recurrent connection in output layer.
recurrent_connection = Connection(

source=target_layer,
target=target_layer,
w=0.025 * (torch.eye(target_layer.n) - 1), # Small, inhibitory "competitive"

→˓weights.
)

network.add_connection(
connection=recurrent_connection, source="B", target="B"

)

# Create and add input and output layer monitors.
source_monitor = Monitor(

obj=source_layer,
state_vars=("s",), # Record spikes and voltages.
time=time, # Length of simulation (if known ahead of time).

)
target_monitor = Monitor(

obj=target_layer,
state_vars=("s", "v"), # Record spikes and voltages.
time=time, # Length of simulation (if known ahead of time).

)

network.add_monitor(monitor=source_monitor, name="A")
network.add_monitor(monitor=target_monitor, name="B")

# Create input spike data, where each spike is distributed according to Bernoulli(0.
→˓1).
input_data = torch.bernoulli(0.1 * torch.ones(time, source_layer.n)).byte()
inputs = {"A": input_data}

# Simulate network on input data.
network.run(inputs=inputs, time=time)

# Retrieve and plot simulation spike, voltage data from monitors.
spikes = {

"A": source_monitor.get("s"), "B": target_monitor.get("s")
}
voltages = {"B": target_monitor.get("v")}

plt.ioff()
plot_spikes(spikes)
plot_voltages(voltages, plot_type="line")
plt.show()

This script will result in figures that looks something like this:

12 Chapter 3. BindsNET User Manual
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Notice that, in the voltages plot, no voltage goes above -52mV, the default threshold of the LIFNodes object. After
hitting this point, neurons’ voltage is reset to -64mV, which can also be seen in the figure.

3.1.4 Simulation Notes

The simulation of all network components is synchronous (clock-driven); i.e., all components are updated at each time
step. Other frameworks use event-driven simulation, where spikes can occur at arbitrary times instead of at regular

3.1. Part I: Creating and Adding Network Components 13
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multiples of dt. We chose clock-driven simulation due to ease of implementation and for computational efficiency
considerations.

During a simulation step, input to each layer is computed as the sum of all outputs from layers connecting to it
(weighted by synapse weights) from the previous simulation time step (implemented by the _get_inputs method
of the bindsnet.network.Network class). This model allows us to decouple network components and perform
their simulation separately at the temporal granularity of chosen dt, interacting only between simulation steps.

This is a strict departure from the computation of deep neural networks (DNNs), in which an ordering of layers is
supposed, and layers’ activations are computed in sequence from the shallowest to the deepest layer in a single time
step, with the exclusion of recurrent layers, whose computations are still ordered in time.

3.2 Part II: Creating and Adding Learning Rules

3.2.1 What is considered a learning rule?

Learning rules are necessary for the automated adaption of network parameters during simulation. At present, Bind-
sNET supports two different categories of learning rules:

• Two factor: Associative learning takes place based on pre- and post-synaptic neural activity. Examples include:

– The typical example is Hebbian learning, which may be summarized as “Cells that fire together wire
together.” That is, co-active neurons causes their connection strength to increase.

– Spike-timing-dependent plasticity (STDP) stipulates that the ordering of pre- and post-synaptic spikes
matters. A synapse is strengthened if the pre-synaptic neuron fires before the post-synaptic neuron,
and, conversely, is weakened if it fires after the post-synaptic neuron. The magnitude of these updates
is a decreasing function of the time between pre- and post-synaptic spikes.

• Three factor: In addition to associating pre- and post-synaptic neural activity, a third factor is introduced which modulates plasticity on a more global level; e.g., for all synapses in the network. Examples include:

– (Reward, error, attention)-modulated (Hebbian learning, STDP): The same learning rules described
above are modulated by the presence of global signals such as reward, error, or attention, which can
be variously defined in machine learning or reinforcement learning contexts. These signals act to gate
plasticity, turning it on or off and switching its sign and magnitude, based on the task at hand.

The above are examples of local learning rules, where the information needed to make updates are thought to be
available at the synapse. For example, pre- and post-synaptic neurons are adjacent to synapses, rendering their spiking
activity accessible, whereas chemical signals like dopamine (hypothesized to be a reward prediction error (RPE)
signal) are widely distributed across certain neuron populations; i.e., they are globally available. This is in contrast to
learning algorithms like back-propagation, where per-synapse error signals are derived by computing backwards from
a loss function at the network’s output layer. Such error derivation is thought to be biologically implausible, especially
compared to the two- and three-factor rules mentioned above.

3.2.2 Creating a learning rule in BindsNET

At present, learning rules are attached to specific Connection objects. For example, to create a connection with a
STDP learning rule on the synapses:

from bindsnet.network.nodes import Input, LIFNodes
from bindsnet.network.topology import Connection
from bindsnet.learning import PostPre

(continues on next page)
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(continued from previous page)

# Create two populations of neurons, one to act as the "source"
# population, and the other, the "target population".
# Neurons involved in certain learning rules must record synaptic
# traces, a vector of short-term memories of the last emitted spikes.
source_layer = Input(n=100, traces=True)
target_layer = LIFNodes(n=1000, traces=True)

# Connect the two layers.
connection = Connection(

source=source_layer, target=target_layer, update_rule=PostPre, nu=(1e-4, 1e-2)
)

The connection may be added to a Network instance as usual. The Connection object takes arguments
update_rule, of type bindsnet.learning.LearningRule, as well as nu, a 2-tuple specifying pre- and
post-synaptic learning rates; i.e., multiplicative factors which modulate how quickly synapse weights change.

Learning rules also accept arguments reduction, which specifies how parameter updates are aggregated across the
batch dimension, and weight_decay, which specifies the time constant of the rate of decay of synapse weights to
zero. By default, parameter updates are averaged across the batch dimension, and there is no weight decay.

Other supported learning rules include Hebbian, WeightDependentPostPre, MSTDP (reward-modulated
STDP), and MSTDPET (reward-modulated STDP with eligibility traces).

Custom learning rules can be implemented by subclassing bindsnet.learning.LearningRule and pro-
viding implementations for the types of AbstractConnection objects intended to be used. For exam-
ple, the Connection and LocalConnection objects rely on the implementation of a private method,
_connection_update, whereas the Conv2dConnection object uses the _conv2d_connection_update
version.

3.2. Part II: Creating and Adding Learning Rules 15
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CHAPTER 4

bindsnet package

4.1 Subpackages

4.1.1 bindsnet.analysis package

Submodules

bindsnet.analysis.plotting module

bindsnet.analysis.visualization module

Module contents

4.1.2 bindsnet.datasets package

Submodules

bindsnet.datasets.preprocess module

Module contents

4.1.3 bindsnet.encoding package

Module contents

4.1.4 bindsnet.environment package

17



bindsnet Documentation, Release 0.2.5

Module contents

4.1.5 bindsnet.evaluation package

Module contents

4.1.6 bindsnet.learning package

Module contents

4.1.7 bindsnet.network package

Submodules

bindsnet.network.monitors module

bindsnet.network.nodes module

bindsnet.network.topology module

Module contents

4.1.8 bindsnet.pipeline package

Module contents

4.2 Module contents
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Indices and tables

• genindex

• search
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